

OVERVIEW of NETWORK LAYER

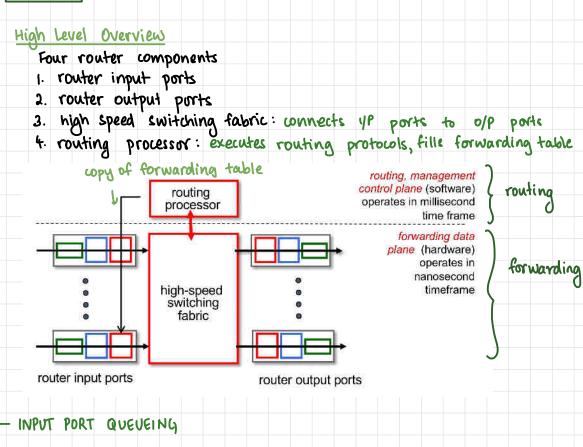
- Responsible for routing and forwarding
- · Transports segment from sender to receiver
 - Sender: encapsulates segments into datagrams, passes to link layer
 - Receiver: delivers segment to transport layer
- · Datagram sent from sender to receiver by routing through routers and end systems
- Multiple paths from Host 1 to Host 2 : decisions taken at network layer
- · Router examines header of packet and forwards it
- · IP addresses assigned to interfaces, not devices

- Each router has 2 ports: input & output (additional ports through external interfaces)
- · Forwarding: transfer packet from one port to another port
- Routers generally have more than 2 ports; therefore forwarding required
- · Recall: hardware lab experiment
- · Forwarding function uses only forwarding table, no algorithm
- · Routing algorithms used for routing ctables cannot be used for large networks)

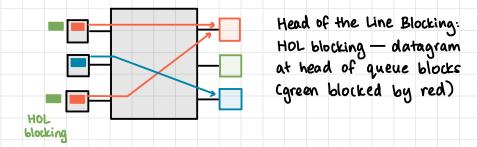
connection setup

- · some architectures: ATM, frame relay, X.25 require handshaking
- routers along chosen path handshake with each other; set up state

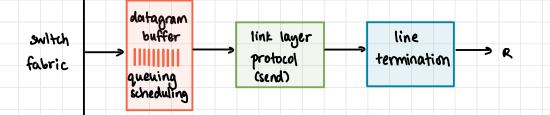
- network layer: connection between end devices; responsibility of routers
- · transport layer: connection between processes (ports)


Service Model

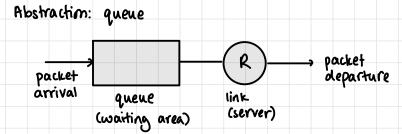
- · Default for internet: best-effort service model
- No guarantee in time frame, no guaranteed order, guaranteed data delivery, guaranteed bandwidth in best-effort service


ເມ	successful delivery of datagram	M
no guarantee on: (2)	timing	
	bandwidth	

Network	Service	Quality of Service (QoS) Guarantees ?			
Architecture	Model	Bandwidth	Loss	Order	Timing
Internet	best effort	none	no	no	no
ATM	Constant Bit Rate	Constant rate	yes	yes	yes
ATM	Available Bit Rate	Guaranteed min	no	yes	no
Internet	Intserv Guaranteed (RFC 1633)	yes	yes	yes	yes
Internet	Diffserv (RFC 2475)	possible	possibly	possibly	no


ROUTER

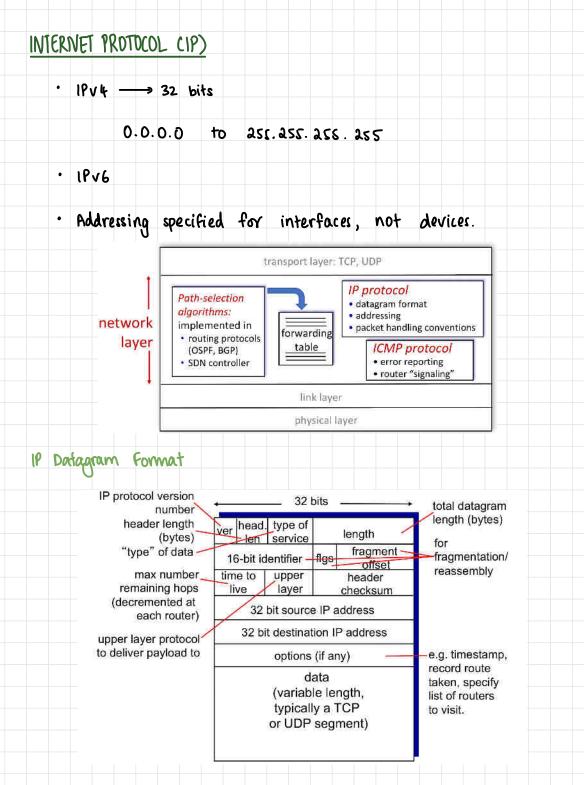
- If packets come in at a speed greater than router's fabric, queuing will occur
- If switch fabric slower than input ports combined, input port queuing occurs



OUTPUT PORT QUEUEING

- Datagrams arrive from fabric faster than link transmission rate buffering colp?
- Drap policy what datagrams to drop if no free buffers; data loss
- Scheduling discipline chooses among queued datagrams for transmission (eq: priority scheduling)

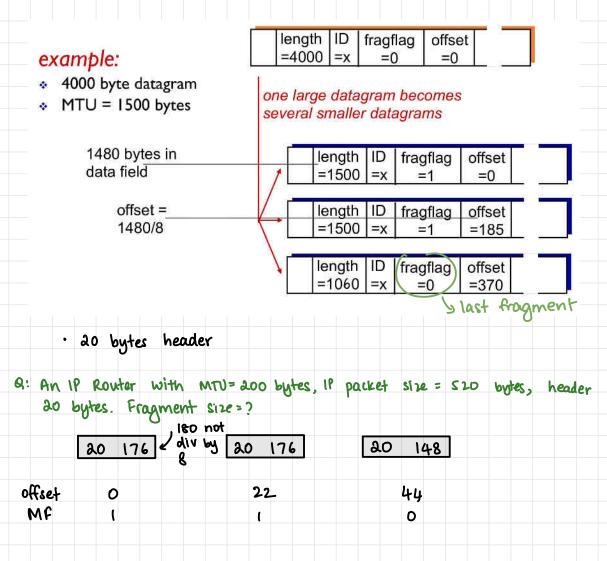
Buffer Management

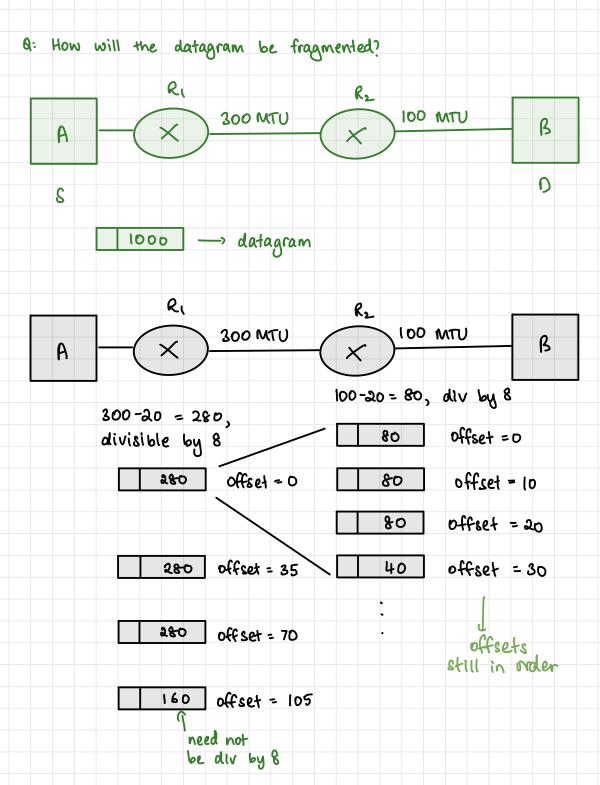


DROP

- · tail drop drop arriving packet
- · privity drop drop based on priority

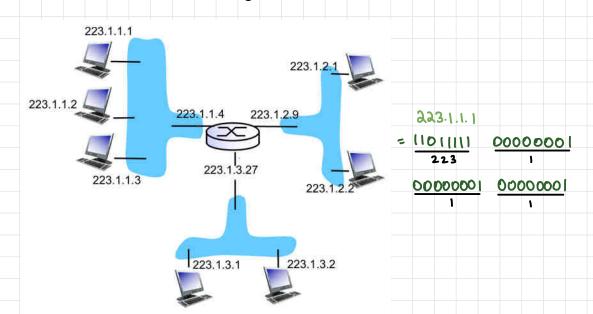
MARKING


· which packets to mark to signal congection (ECN, RED)



1P Fragmentation

- Network links MTU (max transfer size)
- · Link-level frame


- Large datagram divided (fragmented)
 One datagram -> several datagrams
 Reassembled at final destination (host), not routers

1Pv4 Addressing

- · IPv4 Address 32 bit unique ID
- · 4 octets separated by dots

- · IP address is unique to every interface
- Interface: connection between host/router and physical link

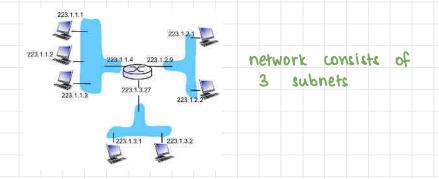
Q: Convert to decimal IP Address

(i) 10000001	00001011	00001011	ιιοιιι
129	u	<u> </u>	હ રુવ
UID 1100 0001	(000 00()	00011011	www
193	131	27	a s5

a: convert to binarg

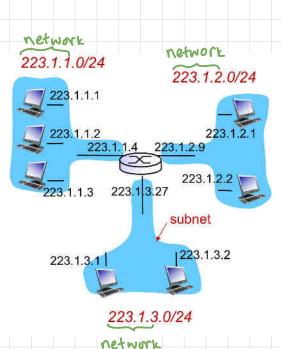
ύ) ΙΙΙ. 56. 45.78 ΟΙΙΟΙΙΙΙ ΟΟΙΙΟΟΟ ΟΟΙΟΙΙΟΙ ΟΙΟΟΙΙΙΟ

(1) 221.34.7.82


101101 0010000 0100000111 01010010

INTERFACE CONNECTION

- · Interfaces connected through wires using switches (wired)
- · Switch: interconnection between end devices and router

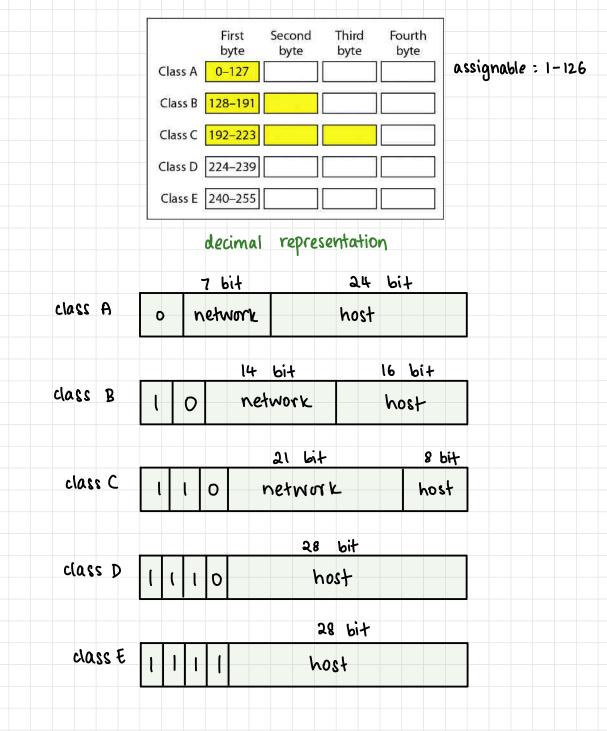

Subnet

- Sub-networks created when a router is logically removed from a network
- Device interfaces that can physically reach each other without passing through a router

Structure of IP Address

- Subnet part: devices in same subnet have common higher order bits
- · Host part: remaining lower order bits
- · Subnet IDs (network IDs)
- 24 8x3 bits -> subnet mask: /24

ADDRESSING


· IPv4

CLASSFUL ADDRESSING

- · Class A, Class B, Class C
- Network portion 8 class A (/8)
 Network portion 16 class B (/16)
 Network portion 24 class C (/24)
 Multicast class D
 Broadcast class E
- · 2 addresses reserved (127.0.0.1 network address and broadcast address)
- Hosts Class $C = \lambda^8 \lambda = 254$ } too small Hosts class $B = \lambda^{16} - \lambda = 65634$ } too large Hosts class $A = \lambda^{24} - \lambda = 16777214$ }
- Classful addressing, therefore, almost obsolete and classless used

Identifying class from First Byte

	First byte	Second byte	Third byte	Fourth byte	
Class A	0				/8
Class B	10				/16
Class C	110				/24
Class D	1110				
Class E	1111				

CLASSLESS ADDRESSING

- · no restriction on subnetting
- · CIDR Classless InterDomain Routing "cider"
- format: a.b.c.d/x where x = no.of bits in subnet portion of address

An organization is granted the block 214.17.160.0/24. The administrator wants to create 8 subnets.

a. Find the subnet mask.

b. Find the number of addresses in each subnet.

- c. Find the last addresses in first subnet.
- d. Find the first addresses in last subnet.

All possible addresses must fall in 214.17.160.0/24

(a) must be divided into ⁸ subnets
 ∴ log₂ 8 - 3 additional bits req

.: subnet mask = /27

(b) No. of host bits = 32-27=5 => no. of addresces = a⁵ = 32 no. of assignable addresses = 32-2 = 30 (hosts)

(c) Last address in first subnet = $214.17.160.000 1111)_2$ = 214.17.160.31(d) First address in last subnet = $214.17.160.(111.00000)_2$ = 214.17.160.224 Q: Find the class of the following IP addresses

Ci) 208.34.54.12C(192-223)(ii) 238.34.2.1D(224-239)(iii) 114.34.2.8A(0-127)

8: Find network ID and host ID

(i) 114.34.2.8 class A: 18 net 10: 114 host 10: 34.2.8 (i) 132.56.8.6 class B: 16 net 10: 132.56 host 10: 8-6 (ii) 222.35.4.1 clase c: 124 net 10: 222.35.4 host 10! 1

Q: In a block of addresses, IP address of one host is 25.34.12.56/16. What are the first & last addresses in this block?

25.34.0.0 ---- 25.34.255.255

first address = 25.34.12.56 & Mask

last address = 25.34.12.56 [] ~ mask

Q: An organisation is granted the block 16.0.0.0/8. The admin wants to create 500 fixed length subnets. i) Find subnet mark ii) Find no. of addresses in subnet each iii) Find first & last addresses in subnet 1 iv) Find first & last addresses in subnet 500 additional bits = [log_ 500] = 9

(i) subnet mask = 9 + 8 = 17(i) no. of addresses/subnet = 2 = 2

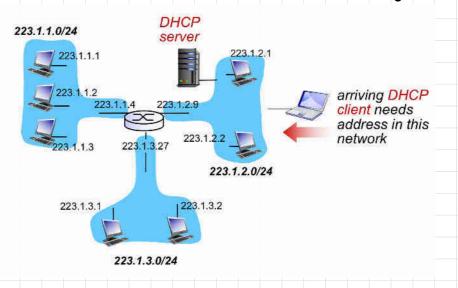
first addr = 16.0.0.0

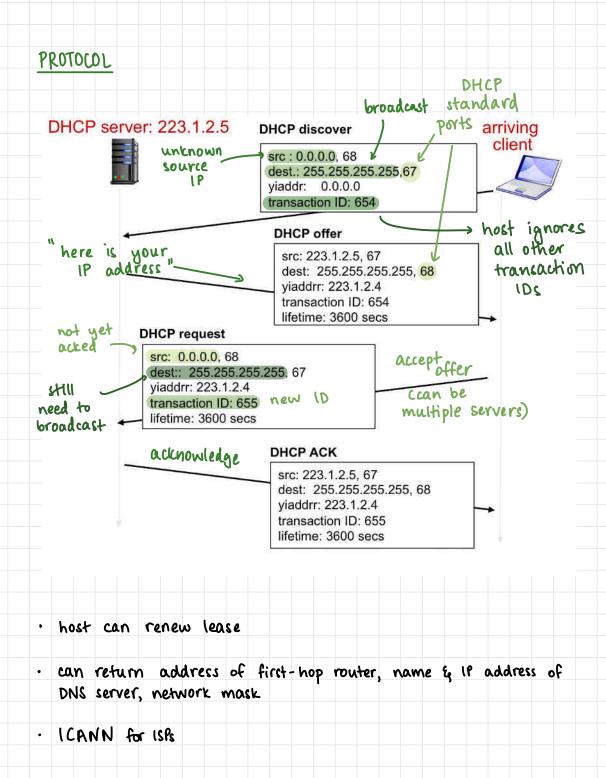
last addr = 16.0.01111111.255 = 16.0.127.255

(iv) subnet 512 - 16.1111 (111 .1 0000000, 00000000

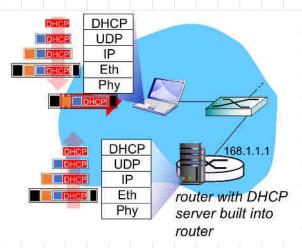
500 = 512 - 12 = 1111 (111 1 12 = 1010) - 1010 1111 (010 1

first = 16.255.128.0

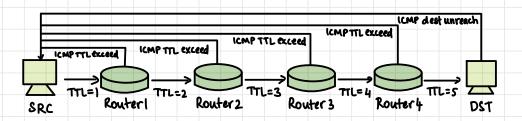

last = 16.255.255.255


DHCP

- · Application layer protocol, not network layer
- · Dynamic Host Configuration Protocol
- Dynamically obtains IP address from network server when it joins network
- Allows reuse of addresses, support for mobile users who join/ leave network

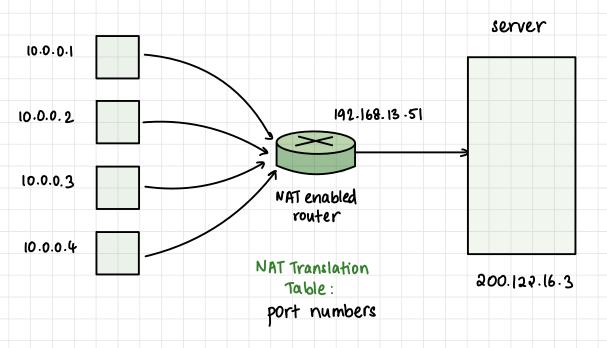

Overview

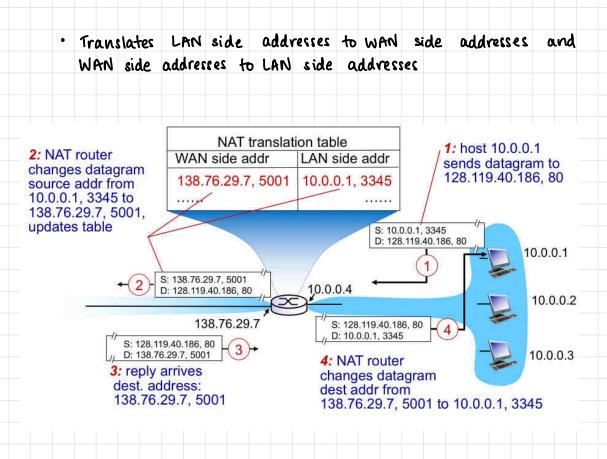
- · Host entering network broadcasts DHCP discover message
- · DHCP server in network responds with DHCP offer message
- · Host requests IP address: DHCP request message
- DHCP server sends 1P address: DHCP ack message


ICMP PROTOCOL

- · Internet Control Message Protocol
- · Communicate control messages Cnetwork layer information) between hosts and routers
- · Network layer protocol
- · Typically used for error reporting
- Architecturally lies above IP and below transport, but
 often considered to be a part of IP
- · IP datagrams contain ICMP msg

Type & Cod	e						
-0.	Type	Code	description				
	0	echo reply (ping)					
	3	0	dest. network unreachable				
	3	1	dest host unreachable				
	3	2	dest protocol unreachable				
	3	3	dest port unreachable				
	3	6	dest network unknown				
	3	7	dest host unknown				
	4	0	source quench (congestion				
			control - not used)				
	8	0	echo request (ping)				
	9	0	route advertisement				
	10	0	router discovery				
	11	0	TTL expired				
	12	0	bad IP header				


· Utilities — traceroute & ping


Traceroute

NAT-Network Address Translation

- Entire local network connected to the outside world with a single IP address
- Internally, possesses local addresses that are unique only within local network but not unique over multiple networks
- NAT Translation table from WAN side addr to LAN side address

- At network layer, operating on port numbers (violates layered policy)
- · Transport & application layers at end systems only
- Using router address; violates host-to-host communication as hosts are hidden
- · controversial

IPv6 Addressing

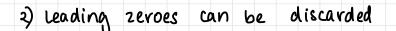
- · 2³² addresses in 1Pv4 insufficient space
- · claims that address space will never get depleted
- 126 bits 1P addresses 2^{128} addresses = $2^{96} \times 1Pv4$ address space
- According to textbook, no. of grains of sand is of the order of 2¹²⁸
- 1Pv4: 12.134.203.142 -> 4 dot-separated decimal no.s
- IPv6:8 colon-separated hexadecimal no.s
- · Most of the address space unused; many zeroes in address

colon hexadecimal notation

FDEC: 0000:0000:0000: BBFF:0000: FFFF

compressed

FDEC: 0: 0: 0: 0: BBFF: 0: FFFF


zero compressed

FDEC :: BBFF : 0 : FFFF

```
all remaing bits zero;
double-colon can be
used only once
```

Note:

1) Address of just double colon — :: is valid C128 bits 0)

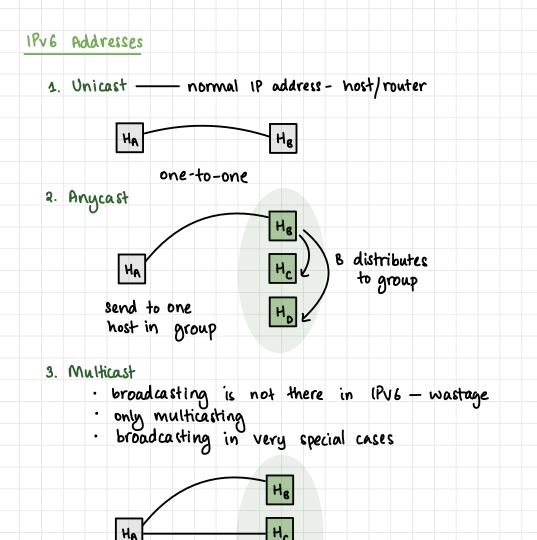
FDEC: 0098: 7600: 0321: 0ABD::

FDEC : 98 : 7600 : 321 : ABD ::

3) Only one double colon per IPv6 address allowed

FDEC : 0: 0: 0: ABLD : 0: 0: 0

, any one can be compressed


```
FDEC :: ABCD:0:0:0
```

MIXED REPRESENTATION

- IPv4 addresses expressed as IPv6 address with leading zeroes
- 160 Cprefix) CIDR address

Q: Show the unabbreviated colon hex notation for the following IPv6 addresses: a. An address with 64 0s followed by 64 1s. b. An address with 128 0s. c. An address with 128 1s. d. An address with 128 alternative 1s and 0s.

- a. 0000: 0000: 0000: 0000: FFFF: FFFF: FFFFF
- b. 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000 : 0000
- c. FFFF: FFFF: FFFF: FFFF: FFFF: FFFF: FFFF
- d. AAAA: AAAA: AAAA: AAAA: AAAA: AAAA: AAAA: AAAA

H_D

one-to-many

ADDRESS SPACE

1. Unicast

- · First 3 bits 001 => 0010 or 0011 first section bits (prefix 001) for Global Unicast
- · In hexadecimal 2 or 3

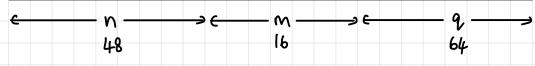
(a) Global unicast address

- · global public IP, prefix : /3
- · 0010 or 0011
- · One-one communication between hosts in the internet
- Address block: 3 bits reserved, 125 available; 2¹²⁵ addresses in block

Global routing prefix Subnet identifier Interface identifier

- 9,-48 64
 - · Only recommendation, not rule

Global Routing Prefix CGRP)


- 3 bits reserved, 45 free (2⁴⁵ values)
 Each of the 2⁴⁵ address blocks provided to 18Ps
- · One block for one organisation

Globa	l routing p	efix Subr	net ident	ifier Inter	face identifier
c	- n		- m -	و	q
	48		16		64

Subnet Identifier

- · Per organisation, 216 subnets
- · No subnets, all zeroes

Global routing prefix Subnet identifier Interface identifier

Interface Identifier

· 264 hosts per subnet

Global routing prefix Subnet identifier Interface identifier

e n - e q -

(b) Unique Local Unicast

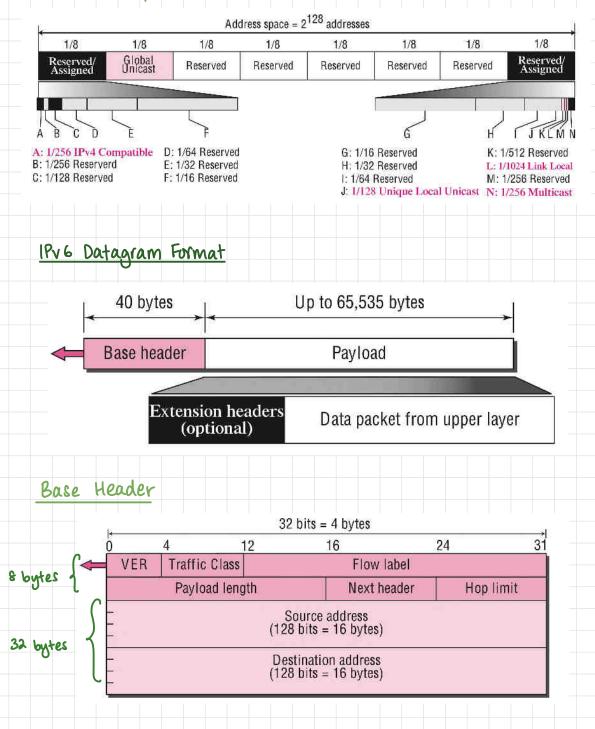
- · private IP, not public (LAN)
- · Prefix: 17 (1111 110 ---- FC or FD)

(C) Link Local Address

• prefix : /10 (1111 1110 10 --- FE8 / FE9 / FEA / FEB)

2. Multicast

- · FF00/8 or prefix (1111 1111 ---- ----)
- · FF00::/8


3. Anycast

· Contact most reachable host in group

Table 26.1 Prefixes for IPv6 Addresses

	Block Prefix	CIDR	Block Assignment	Fraction
1	0000 0000	0000::/8	Reserved (IPv4 compatible)	1/256
	0000 0001	0100::/8	Reserved	1/256
	0000 001	0200::/7	Reserved	1/128
	0000 01	0400::/6	Reserved	1/64
	0000 1	0800::/5	Reserved	1/32
	0001	1000::/4	Reserved	1/16
2	001	2000::/3	Global unicast	1/8
3	010	4000::/3	Reserved	1/8
4	011	6000::/3	Reserved	1/8
5	100	8000::/3	Reserved	1/8
6	101	A000::/3	Reserved	1/8
7	110	C000::/3	Reserved	1/8
8	1110	E000::/4	Reserved	1/16
	11110	F000::/5	Reserved	1/32
	1111 10	F800::/6	Reserved	1/64
	1111 110	FC00::/7	Unique local unicast	1/128
	1111 1110 0	FE00::/9	Reserved	1/512
	1111 1110 10	FE80::/10	Link local addresses	1/1024
	1111 1110 11	FEC0::/10	Reserved	1/1024
	1111 1111	FF00::/8	Multicast addresses	1/256

Address Space Allocation

- VER: version of IP for router to process header (IPv4 and IPv6)
- Traffic class: like type of service field in IPv4 (way that data in datagram has to be handled — priority, speed etc)
- Flow label: not in IPv4 labelling of flow of packets if has to be transferred over some link / specific link (eg: audio streaming)
 - Real Time Transport Protocol-RTP
 - Resourse Reservation Protocol RSVP: reserve link beyond capacity of IP protocol - works at IP layer with additional authority
- · Base header: fixed at 40 bytes

60	ise header		extension headers (opt)			pt)			
←	40) by	tes	\overrightarrow{s}	<u>ب</u>	opt	ron	al	_

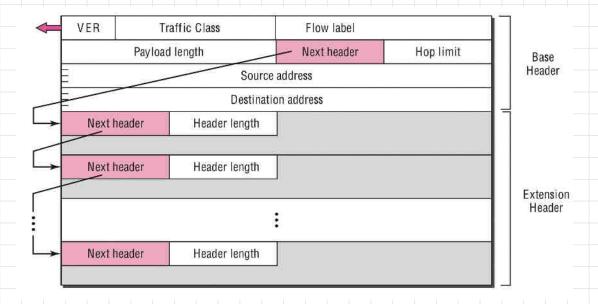

• Next header: next header info

Table 27.1 Next Header Codes

	Code	Next Header	Code	Next Header
	0	Hop-by-hop option	44	Fragmentation
	2	ICMP	50	Encrypted security payload
(Pv4	6	ТСР	51	Authentication
llso C	17	UDP	(59)	Null (No next header)
	43	Source routing	(60) Destination option	

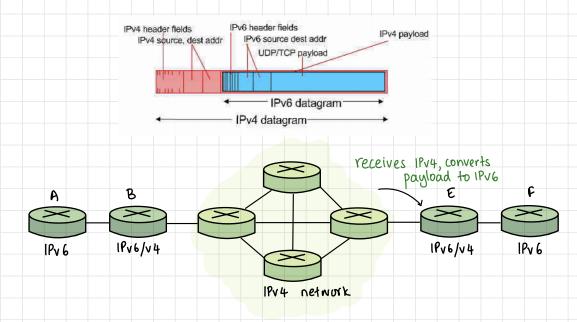
· Hop limit : like TTL in IPv4 (\$-bit hop limit)

Extended Header

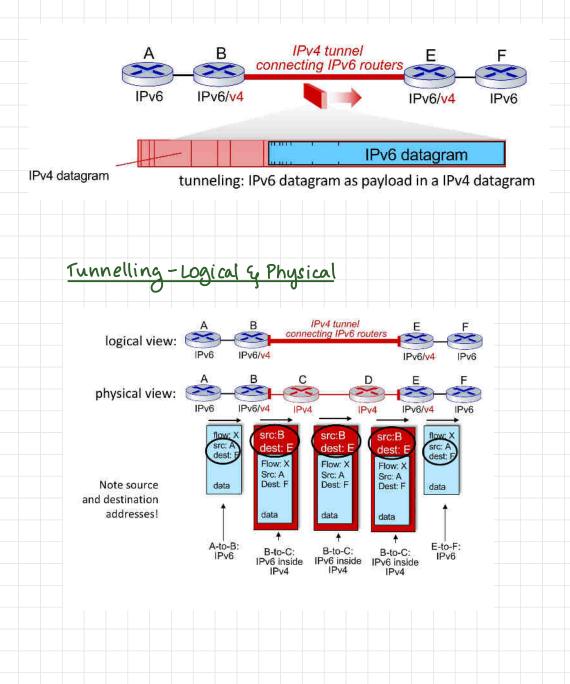
Transition from 1Pv4 to 1Pv6

- · All routers cannot be upgraded simultaneously
- No flag day internet down day

Transition Strategies


- 1. Dual Stack
- a. Tunnelling
- 3. Header Translation

1. Dual Stack


- If router capable of IPv6 communication, router sends IPv6 datagrame
- If only 1Pv4 enabled router encountered, 1Pv4 communication occurs
- All IPv6 enabled devices must be capable of IPv4 communication until complete transition occurs
- If DNs server returns IPv4 address, IPv4 communication and if IPv6 address returned, IPv6 communication

2. Tunnelling

- · IPv6 datagram carried as payload of IPv4 datagram
- · Encapsulation takes time

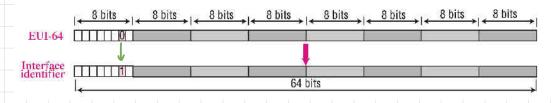
LOGICAL DIAGRAM

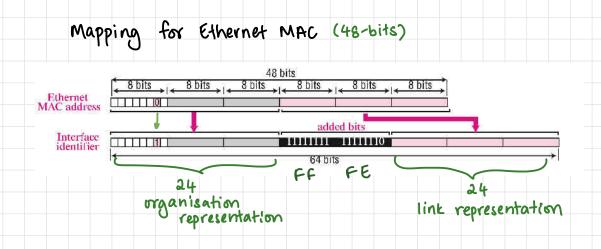
Reserved & Assigned Addresses

					1
Unspecified and should	address	in irve is	- 8211/: dostinati	- reserve	a
	1107 02	asen as	acsinia (1	0 / 1	
8 bits		120	bits		
60000000		All	2'0		
prefix		suffi	×		
Loopback c	address ::	1/128 - ne	ver used	as de	stination
8 bits		120	bits		
00000000	00000	0	• • •	. 0001	
Embedded	IPV4 add	lress — con	npatible		
· CIDR noto	tion — :	.196			
· 1Pv6 → 1Pv		.,			
	96 bits		32	bits	
	AII 0'8		1Pv4 0	ddress	
Embedded	IPv4 ad	dresses-m	apped ad	ldresses	
· IPv6 → IPv4	•				
	80 bits	(6	bits 3	2 bits	
	20 11A	AI	1 1's PV4	address	

Private Addressing in IPVG

- Interface identifier MAC address used
- EVF64 (directly made interface address) or ethernet MAC (48 bits used, fill 16 bits with specific bits)
- Embedded as whole or part of interface identifier (link level addressing)
- · site level & link level


Unique Local Unicast Block


7 bits 1	ri 40 bits	l6 bits	64 6172
(0	random number	subnet ID	interface ID

Link Local Block

l0 bits	38 bits	16 bits	64 bits
111111010	All o's	All D's	interface 1D

Global Unicast Address

Q: Find the interface identifier if the physical address in the EUI is (F5-A9-23-EF-07-14-7A-D2), using the format we defined for ethernet addresses.

7th bit from 0-1

 $1111 \quad 0101 \longrightarrow 1111 \quad 0111 \longrightarrow F7$

F7A9: 23EF: 714: 7AD2

9: Find the interface identifier if the ethernet physical address is (F5-A9-23-14-7A-D2)16 using the format we defined for ethernet addresses.

7th bit from 0-1

 $1111 \quad 010'1 \longrightarrow 1111 \quad 0111 \longrightarrow F7$

After 3rd byte, FFFE padding

F7A9:23FF:FE14:7AD2

Q: An organisation is assigned the block 2000:1456:2474/48. What is the CIDR notation for the blocks in the first and second subnets in this organisation?

Subnet identifier 1 : 0000 16 Subnet identifier 2 : 00016

Blocks: 2000: 1456: 2474:0000/64

2000: 1456: 2474: 0001/64

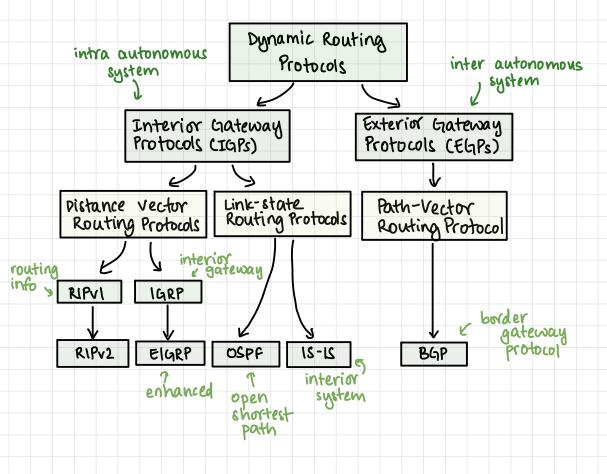
Q: An organisation is assigned the block 2000:1456:2474/48. What is the IPvb address of an interface in the third subnet if the IEEE physical address of the computer is (F5-A9-23-14-7A-D2), ?

Third subnet - 2000:1456:2474:0002/64

Interface identifier - F7A9:23FF:FE14:7AD2

2000: 1456: 2414: 0002: F7A9: 23FF: FE14: 7AD2

AUTO CONFIGURATION


- · DHCP can be used to allocate IPv6 address to host
- · Host can also configure itself-auto configuration
- Host creates link local address for itself
 10-bit prefix (1111 1110 10) + 54 zeroes + 64-bit interface 10
- · Check if link local address is unique
- Sends neighbour solicitation message and waits for neighbour advertisement message
- If it fails, DHCP is used to configure address cas link local address is not unique)
- Otherwise, address used locally; global host sends router solicitation message and if router present, returns router advertisement message with global unicast prefix & subnet ID

Renumbering

- · change ISP prefix must change
- · Router must advertise new prefix
- Neighbours know old prefix, router table has old prefix
- Router allowed to use both prefixes for a while (problems with implementation)
- · Solution: updated DNS and ICMP protocols

ROUTING ALGORITHMS

- Routing table gets too big for all IP addresses and dynamic links to manually update
- · Dynamic routing algorithms update routing table entries

Distance Vector vs Link State

	Distance Vector	Link State
Primary principle	Send entire routing table to its neighbours	Only provides link state information
Learning about network	Learn about network only from neighbours	Learn about network from all routers
Building the routing table	Based on inputs from only neighbours	Based on complete database collected from all routers
Advertisement of updates	Sends periodic updates every 30-90 seconds – Broadcasts updates	Use triggered updates, only when there is a change – Multicasts updates
Routing loops	Vulnerable	Less prone to routing loops
Convergence (stabilization)	Slow	Fast
Resources	Less CPU power and memory	More CPU power and memory required Cost
Cost		More than distance vector
Scalability		More scalable than distance vector
Examples	RIP, IGRP	OSPF, IS-IS